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Introduction to statistics and Data Analysis by Prof Christian Heumaan

Distribution Example
Uniform Rolling a die (discrete)
Waiting for a train (continuous)
Bernoulli Any binary variable such as gender
Binomial Number of “heads” when tossing a coin n times
Poisson Number of particles emitted by a radioactive source entering
a small area in a given time interval
Multinomial Categorical variables such as “party voted for”
Geometric Number of raffle tickets until first ticket wins
Hypergeometric National lotteries; Fisher’s test
Normal Height or weight of women (men)
Exponential Survival time of a PC
2 Sample variance; 2 tests
t Confidence interval for the mean
F Tests in the linear model

Statistical tests

Case

Statistical Test

R Function

Test for the Mean When
the Variance is Known

Test for the Mean When
the Variance is Unknown

Comparing means of two
groups (Two independent
Samples, Variances are
known)

Comparing means of two
groups (Two independent
Samples, Variances are
unknown)

Comparing the Means of
Two Dependent Samples
(paired data)

Comparing means across
more than two groups

One-Sample Gauss Test

One-Sample T test

Two Sample Gauss test

Two Sample T test

Paired t-Test

ANOVA test

z.test{BSDA},
zsum.test{BSDA}
t.test{stats},
tsum.test{BSDA},

t_ test{infer}, t_ test{mosaic}
z.test{BSDA},

zsum.test{ BSDA}

t.test{stats},
tsum.test{ BSDA},
t__test{infer}

t.test with argument paired =
TRUE



Case Statistical Test R Function

Test for the variance One-Sample Chi-Squared Test on varTest{EnvStats}

Variance
Comparing variances of F test (with normality assumptions), var.test{stats},bartlett.test{stats},
two populations Bartlett tests & Levene tests (for non levene{car}

normal distributions)

Sample Size for a One- or Two-Sample t-Test

tTestN {EnvStats}
Compute the sample size necessary to achieve a specified power for a one- or two-sample t-test, given the
scaled difference and significance level.

Introduction to statistical thinking in R without calculus
filepath <- paste("http://pluto.huji.ac.il/~msby/StatThink/Datasets/popl.csv")

library(readr)
popl <- read.csv(filepath)
tibble: :glimpse (popl)

## Rows: 100,000

## Columns: 3

## $ id <int> 5696379, 3019088, 2038883, 1920587, 6006813, 4055945, 926326...
## $ sex <chr> "FEMALE", "MALE", "MALE", "FEMALE", "MALE", "FEMALE", "FEMAL...
## $ height <int> 182, 168, 172, 154, 174, 176, 193, 156, 157, 186, 143, 182,

summary (pop1)
## id sex height
## Min. :1000082  Length:100000 Min. 1117

## 1st Qu.:3254220 Class :character 1st Qu.:162
## Median :5502618 Mode :character Median :170

## Mean : 5502428 Mean :170
## 3rd Qu.:7757518 3rd Qu.:178
## Max. 19999937 Max. 1217

boxplot (height ~ sex, data = popl )

library(ggplot2)
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ggplot(popl, aes(x = sex, y = height))+
geom_boxplot(alpha = 0.25)

220-

200 -

180 -

—————————G» o> ©®

height

160 -

140 -

RRL 1 —

120-

FEMALE

Histogram of the population

-

MALE
sex
g
MALE
sex



hist(popl$height)

Histogram of popl$height

o
o
O p—
3 |
O -
> o
g g = -
g 23
(ox
o
L o
o _|
o
Lo
O p—
| | | | | |
120 140 160 180 200 220
popl$height

plot(table(popl$height))
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#https://stackoverflow.com/questions/32712301/create-empty-data-frame-with-column-names-by-assigning-a-
sample_dist <- data.frame(matrix(nrow = 1000, ncol = 4))

colnames (sample_dist) <- c("size_5","size_10","size_30","size_50")

size <- ¢(5,10,30,50)



#https://laurakgray.weebly. com/uploads/7/3/6/2/7362679/20_~_for_loops_in_r.pdf

for (i in 1:4)
{ for (j in 1:1000)

{sample_dist[j,i] <- mean(sample(popl$height,size[i]))}
}

head(sample_dist)

## size_b size_10 size_30 size_50

## 1 166.8 172.7 167.7333 167.10
## 2 177.6 173.6 172.0333 171.70
## 3 171.8 172.3 168.9333 173.34
## 4 158.6 164.3 169.5333 168.90
## 5 170.2 169.5 166.0000 171.76
## 6 168.4 164.7 169.3000 171.38

Using for-loops to plot the sampling distribution

par (mfrow = c(2,2))
for (i in ¢(5,10,30,50))

{
hist(eval(parse(text = (pasteO("sample_dist$size_",i)))),
main = pasteO("sample size = ", i), prob=TRUE, ylim=c(0,0.4), xlab="height")
}
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# hist(sample_dist$size_5)

Using ggplot with facet wrap to plot the sampling distributions of
different sample sizes

Tidying the data

library(tidyr)

library(ggplot2)

sample_dist %>%

gather (key = "sample size", value = "sample mean", c(size_5:size_50))%>/
ggplot(aes(x = “sample mean™))+

geom_histogram(aes(y = ..density..),bins = 30, fill = "dark grey")+
geom_density(col = "purple", size = .6)+

facet_wrap(~ sample size’)
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#http://rstudio-pubs-static.s3.amazonaws. com/374857_5a23bad9783a43c1b102aa80aab5cla7c. html

filepath <- paste("http://pluto.huji.ac.il/~msby/StatThink/Datasets/pop2.csv")
library(readr)

pop.2 <- read.csv(filepath)

tibble: :glimpse (pop.2)



## Rows: 100,000
## Columns: 7

## ¢ id <int> 3695908, 5778095, 5138370, 2109892, 4132609, 9681961, 495...
## $ sex <chr> "FEMALE", "FEMALE", "MALE", "FEMALE", "FEMALE", "MALE", "...
## $ age <int> 34, 33, 32, 35, 34, 29, 29, 34, 45, 32, 38, 36, 39, 29, 4...
## $ bmi <dbl> 28.78903, 18.91321, 27.66339, 26.30668, 21.78160, 28.9040...
## $ systolic <dbl> 112.5887, 122.9261, 128.3985, 124.0975, 121.3278, 128.652...
## $ diastolic <dbl> 64.84949, 78.71555, 86.57248, 79.18808, 78.51906, 85.0172...
## $ group <chr> "NORMAL", "NORMAL", "NORMAL", "NORMAL", "NORMAL", "NORMAL...

summary (pop.2)

## id sex age bmi

## Min. : 1000050 Length:100000 Min. :20.00  Min. : 9.986
## 1st Qu.:3227516 Class :character 1st Qu.:32.00 1st Qu.:22.081
## Median :5479268 Mode :character Median :35.00 Median :24.819

## Mean 15482739 Mean :34.98  Mean 124.984
## 3rd Qu.:7721878 3rd Qu.:38.00 3rd Qu.:27.704
## Max. 19999889 Max. :54.00 Max. 146.232
## systolic diastolic group

## Min. : 73.37  Min. : 24.77 Length:100000

## 1st Qu.:116.33 1st Qu.: 72.62 Class :character
## Median :124.64 Median : 81.27 Mode :character

## Mean :125.02 Mean : 81.67
## 3rd Qu.:133.22 3rd Qu.: 90.30
## Max. :191.65  Max. :152.34

Our goal in this question is to investigate the sampling distribution of the sample average of the variable
“bmi”. We assume a sample of size n = 150.

1. Compute the population average of the variable “bmi”.

mean (pop.2$bmi)

## [1] 24.98446

2. Compute the population standard deviation of the variable “bmi”.

sd(pop.2$bmi)

## [1] 4.188511
3. Compute the expectation of the sampling distribution for the sample average of the variable.

Creating a simulation to produce (an approximation) of the sampling distribution of the sample average.

sample_dist <- c()

for (i in 1:1000){
rsample = sample(pop.2$bmi,50)
sample_dist[i] = mean(rsample)

}

hist(sample_dist)
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sample_dist
mean (sample_dist)
## [1] 25.01473
4. Compute the standard deviation of the sampling distribution for the sample average of the variable.
sd(sample_dist)
## [1] 0.6216151

5. Identify, using simulations, the central region that contains 80% of the sampling distribution of the
sample average.

quantile(sample_dist, probs = c(0.1,0.9))

#i#t 10% 90%
## 24.21630 25.82594

6. Identify, using the Central Limit Theorem, an approximation of the central region that contains 80%
of the sampling distribution of the sample average.

Llimit <- gnorm(0.1, mean = mean(sample_dist), sd
ULimit <- gnorm(0.9, mean = mean(sample_dist), sd

sd(sample_dist))
sd(sample_dist))

print(paste("(",Llimit,",", ULimit,")"))



## [1] "( 24.2180947713497 , 25.8113582768941 )"

gnorm(c(0.1,0.9), mean(sample_dist), sd(sample_dist))

## [1] 24.21809 25.81136

Question 7.2. A subatomic particle hits a linear detector at random locations. The length of the detector
is 10 nm and the hits are uniformly distributed. The location of 25 random hits, measured from a specified
endpoint of the interval, are marked and the average of the location computed.

1. What is the expectation of the average location?

This is a uniform distribution with hits equally distributed across the length of linear detector. The exepec-
tation of average location will be at the center of the detector.

2. What is the standard deviation of the average location?

3. Use the Central Limit Theorem in order to approximate the probability the average location is in the
left-most third of the linear detector.

4. The central region that contains 99% of the distribution of the average is of the form 5 + ¢. Use the
Central Limit Theorem in order to approximate the value of c.

Moments

{Introduction to Probability, Second Edition - Joseph K. Blitzstein and Jessica Hwang, Chapter 6}
The nth moment of an r.v. X is E(X,,).

A useful way to study a distribution is via its moments. The first 4 moments are widely used as a basis for
quantitatively describing what the distribution looks like, though many other descriptions are also possible.
In particular, the first moment is the mean, the second central moment is the variance, the third standardized
moment measures skew (asymmetry), and the fourth standardized moment minus 3 is a measure of how heavy
the tails are.

Moment generating functions

https:/ /bookdown.org/probability /beta/moment-generating-functions.html
8.3.3 Example 3

Suppose that a market research analyst for a cellular phone company conducts a study of their customers who
exceed the time allowance included on their basic cellular phone contract. The analyst finds that for those
customers who exceed the time included in their basic contract, the excess time used follows an exponential
distribution with a mean of 22 minutes. Consider a random sample of 80 customers and find

1. The probability that the average excess time used by the 80 customers in the sample is longer than 20
minutes.

2. The 95th percentile for the average excess time for samples of 80 customers who exceed their basic contract
time allowances.


https://bookdown.org/probability/beta/moment-generating-functions.html

pexp(q = 20, rate = 1/22,lower.tail = FALSE)

## [1] 0.4028903

5 core statistics concepts that show up in data science interviews:
{Eric Weber}

T-tests. Know their assumptions. Know how the t distribution relates to the normal distribution.
Central Limit Theorem. Know what it means for the distribution of the mean. Understand the magic!
Regression assumptions. Know why independence of observations matters and what IID means.
Confidence intervals and relationship to hypothesis tests. Discuss relationship to credible intervals.
The implications of Bayesian priors vs frequentist perspective. What does it mean for practical decision
making?

U o

When do we need to use these different types of statistical tests?

I realize the importance of understanding the relationships between variables before building predictive
models, so here are some layman descriptions for stat tests:

Pearson Correlation

The strength of the association between 2 continuous variables.

Chi-Square Test

The strength of the association between two categorical variables.

Spearman Correlation

The strength of the association between two ordinal variables. (Does not rely on normally distributed data)
ANOVA Test

The difference between group means after any other variance in the outcome variable is accounted for.
Paired T-Test

The difference between two variables from the same population. (ex: a pre and post-test score)
Independent T-Test

The difference between the same variable from different populations. (ex: comparing boys to girls)

Simple Regression

How change in the predictor variable predicts the level of change in outcome variable.

Multiple Regression

How changes in the combination of two or more predictor variables predict the level of change in outcome
variables.

Comparison of numeric data

A. Parametric Tests

— T tests

— Dependant (paired)

— independent (student’s t test)
— One Way ANOVA

B. Non Parametric Tests

— Wilcoxon signed rank test (unpaired Student’s t-test)

— Mann Whitney U test (paired Student’s t-test)

— Kruaskal Wallis Test (nonparametric equivalent of ANOVA)

Normality Tests
In statistics, normality tests are used to determine if a data set is well-modeled by a normal distribution and
to compute how likely it is for a random variable underlying the data set to be normally distributed.

Kolmogorov-Smirnov (K-S) normality test and Shapiro-Wilk’s test. Prerequisite testing for normallity before
many of the other tests can be used. Very important to use preleminary tests to make sure that the test
assumptions are met. All tests assume some certain characteristics about the data. Some tests require the
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data to follow a normal distribution or Gaussian distribution, others are used when the data is skewed, etc.
Failure to check that data meets the prerequisites can (will) result in false results which won’t be noticed.

If the assumptions for parametric tests are not met, there are nonparametric alternatives for comparing
data sets. These include Mann—Whitney U-test as the nonparametric counterpart of the unpaired Student’s
t-test, Wilcoxon signed-rank test as the counterpart of the paired Student’s t-test, Kruskal-Wallis test as
the nonparametric equivalent of ANOVA and the Friedman’s test as the counterpart of repeated measures
ANOVA.

Statistical terminology for model building and validation
Machine learning terminology for model building and validation
Machine learning model overview

Statistical terminology for model building and validation
— Descriptive statistics — Inferential statistics

Machine learning — Supervised learning
— Classification Problem — Regression Problem — Unsupervised learning — Reinforcement learning

Predictive Modelling Statistical learning

Different methods of estimating parameters which are expected to provide estimators having some of these
important properties. Commonly used methods are: 1. Method of moments 2. Method of maximum
likelihood 3. Method of minimum v2 4. Method of least squares {P.K. Sahu et al., Estimation and Inferential
Statistics}

Bayesian Statistics Philosophers of science are aware that many scientists use classical rather than Bayesian
statistical methods, associated with the names of Fisher, Neyman and Pearson.

{Introduction to Statistics and Data Analysis by Christian Heumann - Michael Schomaker Shalabh} How
to use different measures of association: v nominal variables — Pearson’s 2 , relative risks, odds ratio,
Cramer’s V , and Ccorr 2 ordinal variables — Spearman’s rank correlation coeffi- cient, , ¢ 2 continuous
variables — Pearson’s correlation coefficient, Spearman’s correlation coefficient For two variables which are
measured on different scales, for exam- ple continuous/ordinal or ordinal /nominal, one should use measures
of association suitable for the less informative of the two scales. Another graphical representation of both
a continuous and discrete vari- able is stratified confidence interval plots (error plots

p Value

Comparing the observed value of the statistic (here the obtained t-value) with the corresponding distribution
(the t-distribution), we can find the likelihood that a value as extreme as or more extreme than the observed
one is found by chance. This is the so-called p-value.

If the p-value is p < 0:05, we reject the null hypothesis, and speak of a statistically significant difference.
If a value of p < 0:001 is obtained, the result is typically called highly significant. The critical region of a
hypothesis test is the set of all outcomes which cause the null hypothesis to be rejected.

In other words, the p-value states how likely it is to obtain a value as extreme or more extreme by chance
alone, if the null hypothesis is true.

The value against which the p-value is compared is the significance level, and is often indicated with the
letter . The significance level is a user choice, and typically set to 0:05.

This way of proceeding to test a hypothesis is called statistical inference.
Remember, p only indicates the likelihood of obtaining a certain value for the test statistic if the null
hypothesis is true—nothing else!
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