
bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

Table of Contents 

SQL Principles ................................................................................................................................. 2 

Proper use of Aliases ................................................................................................................. 4 

Filtering data ................................................................................................................................. 5 

1. Using the WHERE Clause: .................................................................................................................. 5 

2. Using the FROM Clause (specifically in Joins with the ON Clause): .............. 5 

3. Using the HAVING Clause: ............................................................................................................... 5 

Additional Points: .......................................................................................................................................... 5 

WHERE Versus HAVING – CAUTION AND TAKEAWAYS ............................................................................... 5 

Filtering data – Concise Summary with Sample codes ................................................ 6 

Recursive CTEs – Food for thought ...................................................................................... 8 

Basic Structure: ............................................................................................................................................... 9 

How It Works: ...................................................................................................................................................... 9 

Use Cases: ............................................................................................................................................................. 9 

Example: .................................................................................................................................................................. 9 

Key Points to Remember: ............................................................................................................................... 9 

Solved Problems ............................................................................................................................. 10 

HackerRank Problem : Challenges | Medium Level ...................................................................... 10 

HackerRank Problem : Contest Leaderboard | Medium Level ................................................ 14 

MySQL from the Command Line interface ........................................................................... 17 

Accessing MySQL from terminal in MacOS ......................................................................................... 17 

Commonly used MySQL commands in terminal .................................................................................... 18 

Resources to follow .................................................................................................................... 19 
 
	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

SQL Principles   

1. Master the Order of SQL Clauses and Their Execution Sequence 
• Writing Order: When writing an SQL statement, follow this standard sequence of 

clauses: 
> SELECT 
> FROM 
> JOIN (if applicable) 
> WHERE 
> GROUP BY 
> HAVING 
> WINDOW (for window functions, if applicable) 
> ORDER BY 
> LIMIT (or equivalent like TOP or FETCH FIRST) 

 
• Execution Hierarchy: Understand the logical order in which these clauses are 

processed: 
> FROM and JOIN clauses to determine the total working set of data. 
> WHERE clause to filter rows. 
> GROUP BY to arrange the data into groups. 
> HAVING clause to filter groups. 
> SELECT clause to choose/select columns to be displayed. 
> WINDOW functions are applied. 
> ORDER BY to sort the result set. 
> LIMIT to restrict the number of rows returned. 

2. Understand Database Schema Design 
• Grasp the fundamentals of database normalization for reducing redundancy and 

ensuring data integrity. 
• Apply denormalization techniques where necessary for performance in analytical 

queries. 
3. Master Data Retrieval Techniques 

• Develop proficiency in writing SELECT statements, specifying columns and using 
different types of filters (WHERE clauses). 

• Understand and effectively use aggregate functions (COUNT, SUM, AVG, MIN, MAX) and 
grouping (GROUP BY) to summarize data. 

• Utilize JOIN operations (INNER, LEFT, RIGHT, FULL OUTER) to retrieve data from 
multiple tables and understand their use cases. 

• Employ subqueries and common table expressions (CTEs) for complex data retrieval 
and organization. 

4. Advanced Querying Techniques 
• Learn to use window functions (ROW_NUMBER(), RANK(), SUM() OVER(), etc.) for 

sophisticated data analysis tasks like calculating running totals or moving 
averages. 

• Apply set operations like UNION, UNION ALL, INTERSECT, and EXCEPT (or MINUS) to 
combine or compare datasets. 

5. Proficiency in Date-Time Functions 
• Gain a solid understanding of the date-time functions available in SQL, such as 

GETDATE(), DATEADD(), DATEDIFF(), DATE_FORMAT(), and others, depending on your SQL 
dialect. 

• Learn to perform common date-time operations like extracting specific components 
(day, month, year), manipulating dates (adding or subtracting intervals), and 
formatting dates for display. 

6. Mastering String Functions 
• Familiarize yourself with essential string functions like CONCAT(), SUBSTRING(), 

CHAR_LENGTH(), UPPER(), LOWER(), and others. 
• Understand how to use these functions for data cleaning, manipulation, and 

preparation, which is especially important in data analysis and reporting. 
7. Handling of Time Zones 

• Be aware of time zone considerations when working with date-time data, especially 
in applications spanning multiple time zones. 

• Understand how your database manages time zones and how to convert date-time values 
accordingly. 

8. Pattern Matching and Regular Expressions 

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

• Learn to use LIKE, SIMILAR TO, or regular expression functions for pattern matching 
in strings. 

• These are invaluable for filtering data based on specific text patterns. 
 
9. Efficient Query Optimization 

• Optimize SQL queries for performance by avoiding unnecessary columns in SELECT 
statements and using JOIN clauses and indexes efficiently. 

• Regularly review and tune SQL queries and database designs, using tools like EXPLAIN 
plans to understand and optimize query execution. 

10. Data Manipulation and Integrity 
• Be adept with data manipulation statements (INSERT, UPDATE, DELETE) and understand 

their impact on database integrity. 
• Implement and enforce data integrity through the use of primary keys, foreign keys, 

and constraints (UNIQUE, NOT NULL, CHECK). 
11. Transaction Control and Security 

• Use transaction control statements (BEGIN, COMMIT, ROLLBACK) to ensure data 
consistency and integrity. 

• Understand and mitigate SQL injection risks; ensure database security through 
parameterized queries and proper access controls. 

12. Reporting and Data Analysis 
• Develop the ability to create effective reports and export data, integrating SQL 

with business intelligence tools and reporting platforms. 
• Translate business requirements into SQL queries, demonstrating strong data 

modelling and analysis skills. 
13. SQL Variants and Compatibility 

• Recognize the nuances of different SQL dialects (MySQL, PostgreSQL, SQL Server, 
etc.) and their unique features and functions. 

14. Best Practices in SQL Coding 
• Write clear, readable SQL code with proper formatting and comments for better 

maintainability. 
• Use aliases and organize SQL scripts logically, enhancing the readability and 

understandability of the code. 
15. Continuous Learning and Collaboration 

• Stay updated with the latest developments in SQL standards and database 
technologies. 

• Engage in continuous learning to adapt to new tools and techniques in data 
management and analysis. 

• Document SQL queries and database structures for effective team collaboration and 
knowledge sharing. 

16. Unit Testing and Validation 
• Implement unit testing for SQL queries to ensure the accuracy and reliability of 

data retrieval and manipulation. 
• Validate data and query outputs regularly to maintain high data quality standards. 

 
The above principles will develop a strong foundation in SQL, leading to more efficient 
data handling, insightful analysis, and informed business decisions. Each principle 
builds upon the previous one, creating a comprehensive and structured approach to 
mastering SQL. 
	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

Proper use of Aliases 

Proper use of aliases in SQL is an important practice for writing clear and maintainable 
queries, especially in complex database operations. Here are some relevant pointers 
regarding the use of aliases: 
1. Use Aliases for Clarity and Readability 

• Aliases are particularly useful in queries with joins or subqueries where tables 
or subqueries are referenced multiple times. 

• Assign meaningful alias names that clearly indicate the role or content of the 
table or column. 

2. Column Aliases for Better Output Formatting 
• Use column aliases to provide more readable and descriptive column names in the 

output of your query. 
• This is especially useful when the original column names are cryptic, derived from 

calculations, or when you want to present the data in a specific format to end 
users. 

3. Table Aliases to Simplify Query Writing 
• When working with joins, especially involving multiple tables or subqueries, use 

table aliases to shorten and simplify your SQL syntax. 
• This reduces the need to repeatedly write the full table name, making the query 

easier to read and write. 
4. Aliases in Complex Queries 

• In complex queries involving multiple levels of subqueries, aliases help keep track 
of each level and make the query more navigable. 

• They are essential when the same table is joined to itself (self-join) for clarity 
in distinguishing different instances of the table. 

5. Consistency in Aliasing 
• Be consistent in the use of aliases throughout the query. Once you assign an alias 

to a table or column, use that alias exclusively for all references to it in that 
query. 

• This consistency is key to avoiding confusion and potential errors in the query. 
6. Using Aliases in Aggregate and Window Functions 

• When using aggregate functions (like SUM, COUNT, etc.) or window functions, aliases 
provide a way to reference the computed columns easily in the query or in the ORDER 
BY clause. 

7. Avoiding Ambiguity 
• Use aliases to avoid ambiguity, especially when different tables in a join have 

columns with the same name. 
• This practice is crucial for ensuring that the SQL engine correctly understands 

which column is being referenced. 
8. Mandatory Aliases in Certain Scenarios 

• In some SQL operations, like when using subqueries in the FROM clause, assigning 
an alias is mandatory. Ensure compliance with these requirements to avoid syntax 
errors. 

9. Formatting and Naming Conventions 
• Follow a consistent naming convention and format for aliases across your queries 

and within your team or organization to maintain uniformity. 
10. Aliasing and SQL Variants 

• Be aware that syntax for aliasing can vary slightly between different SQL variants 
(like MySQL, PostgreSQL, SQL Server). Ensure you're using the correct syntax for 
your specific database system. 

Incorporating these pointers about aliases into SQL practices will enhance the 
readability, maintainability, and overall quality of the database queries. They are 
particularly beneficial in complex queries and in scenarios where presentation and 
clarity of the output are critical. 
 
 
 
 
 
 
 
 
 

 

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

Filtering data 

1. Using the WHERE Clause: 

• Primary Use: Filters rows before any grouping or aggregation occurs. It's applied 
directly to the raw data in the tables. 

• Common Operators: Includes =, !=, >, <, >=, <=, BETWEEN, IN, IS NULL, IS NOT NULL, 
LIKE, and others. 

• Filtering with Subqueries: Allows complex conditions using subqueries, which can 
return a list of values, a single value, or even perform existential checks with 
EXISTS. 

• Note: Cannot be used to filter aggregated data (like sums or averages). 

2. Using the FROM Clause (specifically in Joins with the ON Clause): 

• Role in Joins: The ON clause is part of the syntax for joins (e.g., INNER JOIN, 
LEFT JOIN) and specifies the conditions for how rows from different tables should 
be matched. 

• Filtering Aspect: While primarily used for specifying join conditions, it 
inherently filters data by determining which rows from the joined tables meet the 
join condition. 

• Note: The ON clause is not a general-purpose filtering tool like WHERE but is 
specific to defining relationships between tables in a join. 

3. Using the HAVING Clause: 

• Primary Use: Filters groups of rows after the GROUP BY operation. 
• Applicability: Used when you have aggregations (SUM, COUNT, AVG, etc.) in your 

SELECT statement and want to apply conditions on these aggregated results. 
• Difference from WHERE: WHERE filters individual rows before grouping, while HAVING 

filters groups after grouping. 
• Note: Often used in conjunction with GROUP BY, but can be used without it if the 

query involves aggregate functions. 

Additional Points: 

• Order of Execution: WHERE -> GROUP BY -> HAVING -> SELECT. This is the logical 
processing order, not necessarily the physical execution order used by the SQL 
engine. 

• Performance Considerations: Using WHERE to filter as much as possible before 
aggregation can improve query performance. HAVING should be used for conditions 
that cannot be applied before aggregation. 

In summary, each of these clauses (WHERE, ON in FROM, and HAVING) plays a distinct role 
in filtering data in SQL, and understanding their specific uses and limitations is key 
to writing efficient and effective SQL queries. 

WHERE Versus HAVING – CAUTION AND TAKEAWAYS 

The purpose of both clauses is to filter data. If you are trying to:  
• Filter on particular columns, write your conditions within the WHERE clause  
• Filter on aggregations, write your conditions within the HAVING clause 

 
The contents of a WHERE and HAVING clause cannot be swapped:  

• Never put a condition with an aggregation in the WHERE clause. You will get an 
error.  

• Never put a condition in the HAVING clause that does not involve an aggregation. 
Those conditions are evaluated much more efficiently in the WHERE clause.  

 

	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

Filtering data – Concise Summary with Sample codes 

• using WHERE clause 
o filtering on columns, using =, BETWEEN, IN, IS NULL, LIKE 
o filtering on subqueries 

• using FROM clause: When joining together tables, the ON clause specifies how they 
should be linked together. This is where you can include conditions to restrict 
rows of data returned by the query.  

• using HAVING clause : If there are aggregations within the SELECT statement, the 
HAVING clause is where you specify how the aggregations should be filtered.  

Refer : 

• SQL Pocket Guide by Alice Zhou. 
• “SQL for Data Scientists - A Beginner's Guide for Building Datasets for Analysis” 

by Renee M. P. Teate (Chapter 3 - The WHERE Clause for the sample codes in this 
section.) 

-- Filtering Using predicate on column values within Where clause. A predicate also known 
as conditional statement is a logical comparison that results in one of three values: 
TRUE/FALSE/UNKNOWN  

  SELECT 
      market_date, 
      customer_id, 
      vendor_id, 
      quantity * cost_to_customer_per_qty AS price 
  FROM farmers_market.customer_purchases 
  WHERE 
      customer_id = 4 
      AND vendor_id = 7; 
 
-- Filtering Using BETWEEN in WHERE clause 
SELECT * 
  FROM farmers_market.vendor_booth_assignments 
  WHERE 
      vendor_id = 7  
      AND market_date BETWEEN '2019-03-02' and '2019-03-16' 
  ORDER BY market_date; 
 
-- Filtering Using LIKE in WHERE clause 
 
  SELECT 
      customer_id, 
      customer_first_name, 
      customer_last_name 
  FROM farmers_market.customer 
  WHERE 
      customer_first_name LIKE 'Jer%'; 
 
-- Filtering Using IN condition in WHERE clause 
 
 
SELECT 
      customer_id, 
      customer_first_name, 
      customer_last_name 
  FROM farmers_market.customer 
  WHERE 
      customer_first_name IN ('Renee', 'Rene', 'Renée', 'René', 'Renne'); 
 
	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

-- Filtering Using Subquery within Where clause 

  SELECT 
      market_date, 
      customer_id, 
      vendor_id, 
      quantity * cost_to_customer_per_qty price 
  FROM farmers_market.customer_purchases 
  WHERE 
      market_date IN 
          ( 
          SELECT market_date 
          FROM farmers_market.market_date_info 
          WHERE market_rain_flag = 1 
          ) 

  LIMIT 5 ; 

-- Filtering with Having 

SELECT 
      vendor_id, 
      COUNT(DISTINCT product_id) AS different_products_offered, 
      SUM(quantity * original_price) AS value_of_inventory, 
      SUM(quantity) AS inventory_item_count, 
      SUM(quantity * original_price) / SUM(quantity) AS average_item_price 
  FROM farmers_market.vendor_inventory 
  WHERE market_date BETWEEN '2019-03-02' AND '2019-03-16' 
  GROUP BY vendor_id 
  HAVING inventory_item_count >= 100 
  ORDER BY vendor_id; 
 
 
*Note, the SQL engine is designed to recognize and appropriately handle aliases from the 
SELECT clause in the HAVING and ORDER BY clauses, despite the logical processing order 
of SQL queries.  
	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

Recursive CTEs – Food for thought 

******************** 
****************** 
**************** 
************** 
************ 
********** 
******** 
****** 
**** 
** 
 
-- Print patterns using SQL (HackerRank, Alternative Queries) 
-- Recursive CTE code without comments 
WITH RECURSIVE num(n) AS ( 
    SELECT 20  
 
    UNION ALL 
 
    SELECT n - 2 
    FROM num 
    WHERE n - 2 >= 2 
) 
SELECT  
    load('', num.n, '*') 
FROM  
    num; 

 
 
-- Recursive CTE code with comments 
-- Define a recursive CTE named 'num' 
WITH RECURSIVE num(n) AS ( 
    -- Anchor Member: Start the sequence with 20 
    SELECT 20  
 
    UNION ALL 
 
    -- Recursive Member: In each subsequent iteration,  
    -- decrement the previous number by 2 
    SELECT n - 2 
    FROM num 
    -- Termination Condition: Continue recursion as long as the  
    -- number is greater than or equal to 2 
    WHERE n - 2 >= 2 
) 
 
-- Main query to select from the recursive CTE 
SELECT  
    -- Assuming 'load' is a predefined function in your SQL environment;  
    -- replace it with the actual function intended 
    -- The function is used here with each number generated by the CTE 
    load('', num.n, '*') 
FROM  
    num; -- Select from the recursively generated numbers in CTE 'num' 
 
 
 
	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

Recursive Common Table Expressions (CTEs) are a powerful feature in SQL that allow you 
to execute complex queries, particularly useful for dealing with hierarchical or 
recursive data structures. Here's a more detailed look at recursive CTEs: 

Basic Structure: 

A recursive CTE consists of two parts: 
1. Anchor Member: This is the initial query that forms the base result set of the 

CTE. It's the starting point of the recursion. 
2. Recursive Member: This part of the CTE references the CTE itself and is used to 

extend or transform the result set from the anchor member. 
These two parts are combined using the UNION ALL operator, ensuring that the results of 
the anchor member are combined with the results of the recursive member. 

How It Works: 

• Initialization: The anchor member is executed first to create the initial set of 
rows. 

• Recursion: The recursive member is then repeatedly executed, taking the results 
of the previous iteration as its input, and adding to the overall result set. 

• Termination: The recursion continues until the recursive member returns no rows 
or a specified condition is met, preventing an infinite loop. 

Use Cases: 

• Generating Sequences: Like creating a series of numbers, dates, etc. 
• Hierarchical Data: Navigating tree-like structures, such as organizational 

charts, category trees, or folder structures. 
• Graph Data: Traversing graph data structures, such as finding the shortest path 

or all paths between two nodes. 

Example: 

A simple example of a recursive CTE is generating a series of numbers: 
 
WITH RECURSIVE NumberSeries AS ( 
    SELECT 1 AS Number -- Anchor Member 
    UNION ALL 
    SELECT Number + 1 FROM NumberSeries -- Recursive Member 
    WHERE Number < 10 
) 
SELECT * FROM NumberSeries; 
 
 
This query generates a series of numbers from 1 to 10. 
 
Key Points to Remember: 

• Avoid Infinite Loops: Always ensure there is a condition to terminate the recursion, 
or else the query can go into an infinite loop. 

• Performance: Recursive CTEs can be resource-intensive, especially with large data 
sets or complex recursive logic. 

• Database Support: Most modern relational databases support recursive CTEs, 
including PostgreSQL, MySQL (from version 8.0), SQL Server, and Oracle. 

Recursive CTEs open up a wide array of possibilities for data manipulation and querying, 
especially in scenarios where traditional iterative programming techniques are not 
efficient or possible in standard SQL. 
 
	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

Solved Problems 
 
HackerRank Problem : Challenges | Medium Level 
https://www.hackerrank.com/challenges/challenges/problem 

Julia asked her students to create some coding challenges. Write a query to print 
the hacker_id, name, and the total number of challenges created by each student. 
Sort your results by the total number of challenges in descending order. If more 
than one student created the same number of challenges, then sort the result 
by hacker_id. If more than one student created the same number of challenges and the 
count is less than the maximum number of challenges created, then exclude those 
students from the result. 
 
Input Format 

The following tables contain challenge data: 

• Hackers: The hacker_id is the id of the hacker, and name is the name of the 
hacker.   
Column Type 
hacker_id Integer 
name String 

• Challenges: The challenge_id is the id of the challenge, and hacker_id is the 
id of the student who created the challenge.  
Column Type 
challenge_id Integer 
hacker_id Integer 

 
	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/
https://www.hackerrank.com/challenges/challenges/problem


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

Solution : 
 
Before proceeding with the solution, let us rethink and clarify the objective. 
 
Objective: To select hackers based on the following criteria: 

1. Maximum Challenge Solvers: Hackers who have solved the highest number of 
challenges, regardless of whether there are ties for this top spot. 

2. Unique Challenge Solvers: Hackers who have solved a number of challenges that 
is unique compared to other hackers. This means selecting hackers who are the 
only ones to have solved that specific number of challenges. 

Example Scenario for Clarity: 
• Suppose hackers A and B have each solved the maximum of 7 challenges. 
• Hackers D and E are tied, with each solving 5 challenges. 
• Hacker F has solved 3 challenges, and no other hacker has solved exactly 3 

challenges. 
Expected Outcome: 

• The query should return Hackers A and B (for solving the maximum number of 
challenges) and Hacker F (for solving a unique number of challenges). 

• Hackers D and E should be excluded, despite being tied in their challenge 
count, because their challenge count is not the maximum and is not unique. 

 
In summary, the query aims to identify hackers who stand out either by being at the 
very top in terms of challenge count or by having a distinct challenge count not 
shared with any other hacker. 
 
 
Approach 
To achieve the objective of selecting hackers who have either solved the maximum 
number of challenges or have a unique number of challenges, we can simplify the query 
by breaking it down into more intuitive steps. 
 

1. Calculate the number of challenges solved by each hacker. 
2. Determine the maximum number of challenges solved by any hacker. 
3. Find the counts of challenges that are unique to individual hackers. 
4. Select hackers who have either solved the maximum number of challenges or have 

a unique challenge count. 
 
 
In the following SQL query: 

• RankedHackers CTE calculates the number of challenges solved by each hacker. 
• MaxChallenges CTE finds the maximum number of challenges solved by any hacker. 
• UniqueChallenges CTE finds the challenge counts that are unique to individual 

hackers. 
• The final SELECT statement uses LEFT JOIN to bring in information about whether 

a hacker's challenge count is the maximum or unique, and filters out those who 
don't meet either criterion. 

	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

 
SQL Code using CTE (common table expressions) 
 
-- Calculate the number of challenges solved by each hacker 
WITH ChallengeCounts AS ( 
    SELECT  
        h.hacker_id,  
        h.name,  
        COUNT(DISTINCT c.challenge_id) AS challengesCount 
    FROM  
        Challenges c 
    JOIN  
        Hackers h ON c.hacker_id = h.hacker_id 
    GROUP BY  
        h.hacker_id, h.name 
), 
-- Determine the maximum number of challenges solved by any hacker 
MaxChallengeCount AS ( 
    SELECT  
        MAX(challengesCount) AS maxChallenges 
    FROM  
        ChallengeCounts 
), 
-- Find the counts of challenges that are unique to individual hackers 
UniqueChallengeCounts AS ( 
    SELECT  
        challengesCount 
    FROM  
        ChallengeCounts 
    GROUP BY  
        challengesCount 
    HAVING  
        COUNT(*) = 1 
) 
-- Select hackers who have either solved the maximum number of challenges 
-- or have a unique challenge count 
SELECT  
    cc.hacker_id,  
    cc.name,  
    cc.challengesCount 
FROM  
    ChallengeCounts cc 
WHERE  
    -- Check if the hacker's challenge count is the maximum 
    cc.challengesCount IN (SELECT maxChallenges FROM MaxChallengeCount) 
    -- OR check if the hacker's challenge count is unique 
    OR cc.challengesCount IN (SELECT challengesCount FROM 
UniqueChallengeCounts) 
ORDER BY  
    cc.challengesCount DESC, cc.hacker_id; 
 
 
	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

 
SQL Code using Subquery approach 
 
As Common Table Expressions (CTEs) is not compatible with older versions of 
MySQL, we will explore alternative approach of using subqueries directly within 
the FROM and WHERE clauses. 
 
Approach 
 

• We first join the Challenges and Hackers tables and group the results by 
hacker to calculate each hacker's challenge count. 

• The HAVING clause filters these results based on two conditions: 

o The hacker's challenge count matches the maximum number of 
challenges solved, determined by a subquery (SubMax) that calculates 
the maximum challenge count across all hackers. 

o The hacker's challenge count is unique, as determined by another 
subquery (SubUnique). This subquery calculates challenge counts for 
all hackers and then groups them to find counts that only appear 
once. 

• Finally, the results are ordered by the challenge count in descending 
order and then by the hacker ID. 

 
SELECT  
    h.hacker_id,  
    h.name,  
    COUNT(DISTINCT c.challenge_id) AS challengesCount 
FROM  
    Challenges c 
JOIN  
    Hackers h ON c.hacker_id = h.hacker_id 
GROUP BY  
    h.hacker_id, h.name 
HAVING  
    -- Check if the hacker's challenge count is the maximum 
    COUNT(DISTINCT c.challenge_id) = ( 
        SELECT MAX(ChallengeCount)  
        FROM ( 
            SELECT COUNT(DISTINCT challenge_id) AS ChallengeCount  
            FROM Challenges  
            GROUP BY hacker_id 
        ) AS SubMax 
    ) 
    -- OR check if the hacker's challenge count is unique 
    OR COUNT(DISTINCT c.challenge_id) IN ( 
        SELECT ChallengeCount  
        FROM ( 
            SELECT COUNT(DISTINCT challenge_id) AS ChallengeCount  
            FROM Challenges  
            GROUP BY hacker_id 
        ) AS SubUnique 
        GROUP BY ChallengeCount  
        HAVING COUNT(*) = 1 
    ) 
ORDER BY  
    COUNT(DISTINCT c.challenge_id) DESC, h.hacker_id; 
 
	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

HackerRank Problem : Contest Leaderboard | Medium Level 
https://www.hackerrank.com/challenges/contest-leaderboard/problem 

You did such a great job helping Julia with her last coding contest challenge that 
she wants you to work on this one, too!  

The total score of a hacker is the sum of their maximum scores for all of the 
challenges. Write a query to print the hacker_id, name, and total score of the 
hackers ordered by the descending score. If more than one hacker achieved the same 
total score, then sort the result by ascending hacker_id. Exclude all hackers with 
a total score of  from your result. 

Input Format 
The following tables contain contest data: 

• Hackers: The hacker_id is the id of the hacker, and name is the name of 
the hacker.   

Column Type 
hacker_id Integer 
name String 

 
• Submissions: The submission_id is the id of the submission, hacker_id is 

the id of the hacker who made the submission, challenge_id is the id of 
the challenge for which the submission belongs to, and score is the score 
of the submission.  

Column Type 
submission_id Integer 
hacker_id Integer 
challenge_id Integer 
score Integer 

 
 
  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/
https://www.hackerrank.com/challenges/contest-leaderboard/problem


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

SQL Code using CTE approach 
 
 
-- CTE to calculate the maximum score for each challenge per hacker 
WITH t AS ( 
    SELECT  
        h.hacker_id,             -- Hacker's ID 
        h.name,                  -- Hacker's Name 
        c.challenge_id,          -- ID of the challenge 
        MAX(c.score) AS score    -- Maximum score per challenge for each hacker 
    FROM  
        Hackers h                -- Hackers table 
        JOIN Submissions c ON h.hacker_id = c.hacker_id  
        -- Joining with Submissions table 
    GROUP BY  
        h.hacker_id, h.name, c.challenge_id  
        -- Grouping by hacker_id, name, and challenge_id 
) 
 
-- Main query to sum up the maximum scores of each hacker 
SELECT  
    t.hacker_id,                -- Hacker's ID 
    t.name,                     -- Hacker's Name 
    SUM(t.score) AS totalscore  -- Total score for each hacker 
FROM  
    t                           -- Using the CTE defined above 
GROUP BY 
    t.hacker_id,                -- Grouping by hacker_id 
    t.name                       
    -- and name to sum scores for each unique hacker 
HAVING  
    SUM(t.score) > 0             
    -- Filtering out hackers with zero or negative total scores 
ORDER BY  
    totalscore DESC,            -- Ordering by total score in descending order 
    t.hacker_id ASC;            -- and then by hacker_id in ascending order for ties 
 
 
This query is doing the following: 

1. The Common Table Expression (CTE) named t is computing the maximum score obtained 
by each hacker in each challenge. It's important to note that this CTE groups by 
hacker_id, name, and challenge_id, which means it calculates the maximum score for 
each hacker for each challenge they participated in. 

2. The main query then sums these maximum scores for each hacker across all challenges. 
This sum represents each hacker's total score. 

3. The HAVING clause filters out any hackers whose total score is 0 or less, as we're 
only interested in those who have a positive total score. 

4. The result is then ordered by totalscore in descending order, so the hacker with 
the highest total score appears first. In case of ties in the total score, the 
hacker_id is used to order the results in ascending order. 

	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

SQL Code using Subquery approach 
 
SELECT  
    sub.hacker_id,             -- Selecting hacker's ID 
    sub.name,                  -- Selecting hacker's name 
    SUM(sub.score) AS totalscore  
    -- Summing up the scores to get total score 
FROM ( 
    -- Subquery to get maximum score per challenge for each hacker 
    SELECT  
        h.hacker_id,             -- Hacker's ID 
        h.name,                  -- Hacker's name 
        c.challenge_id,          -- Challenge ID 
        MAX(c.score) AS score     
        -- Maximum score for each challenge per hacker 
    FROM  
        Hackers h                -- From Hackers table 
        JOIN Submissions c ON h.hacker_id = c.hacker_id  
        -- Joining with Submissions table 
    GROUP BY  
        h.hacker_id, h.name, c.challenge_id  
        -- Grouping by hacker_id, name, and challenge_id 
) AS sub                          -- Alias for the subquery 
GROUP BY 
    sub.hacker_id,                 -- Grouping results by hacker_id 
    sub.name                       -- and name in the outer query 
HAVING  
    SUM(sub.score) > 0              
    -- Filtering to include only hackers with a positive total score 
ORDER BY  
    totalscore DESC,               -- Ordering by total score in descending order 
    sub.hacker_id ASC;             -- and then by hacker_id in ascending order for ties 
 
 

In the above query: 

• The inner subquery (aliased as sub) calculates the maximum score for each 
challenge that each hacker participated in. This is done by grouping the 
data by hacker_id, name, and challenge_id. 

• The outer query then sums these maximum scores to find the total score for 
each hacker. 

• The HAVING clause filters out hackers with a total score of 0 or less, 
focusing on those who have positive scores. 

• Finally, the results are ordered by the total score in descending order. 
If there are ties in the total score, the hacker_id is used to order these 
ties in ascending order. 

The query effectively captures the total maximum scores of hackers across 
different challenges, ensuring that each hacker's contribution in various 
challenges is considered for their total score. 
	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

MySQL from the Command Line interface 
Accessing MySQL from terminal in MacOS 

 
Command Objective Commands 

Accessing MySQL from Terminal   

Start MySQL in terminal if no instance 
running 

sudo /usr/local/mysql/support-
files/mysql.server start 

If MySQL already running, access the 
MySQL database management system. 
Password will be prompted as a result 

/usr/local/mysql/bin/mysql -u root -p 

Enter Password MySQL@2023 

    

Check if MySQL is Running: 
First, check if the MySQL server is 
actually running. You can use the 
following command to see if MySQL 
processes are active: 

ps aux | grep mysql 

    

Exit mysql from Command Line exit 

    

Stop the Safe Mode MySQL Server: 
Go to the terminal window where you 
started MySQL in safe mode. You can 
stop it by pressing Control + C to 
terminate the process. If that doesn't 
work, you can find the process ID 
(PID) with ps and then use kill to 
stop it: 

ps aux | grep mysqld_safe 

    

Look for the PID in the output, which 
is a number in the second column, and 
then: 
Replace [PID] with the actual process 
ID of the mysqld_safe command. 

sudo kill -SIGTERM [PID] 

After running the kill command, you 
should verify that the process has 
stopped by running ps aux | grep mysql 
again. If the process is still running 
(sometimes it can take a little time 
to shut down), or if it does not shut 
down gracefully with SIGTERM, you 
might need to use SIGKILL, which is a 
more immediate and forceful stop 
command: 

sudo kill -SIGKILL 3710 

 

	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/
mailto:AlanBeaulieu@2023


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

Commonly used MySQL commands in terminal 

SHOW DATABASES; This command lists all databases on the MySQL 
server. 

USE database_name; Selects a particular database to work with. 

SHOW TABLES; Once you've selected a database, this command 
shows all tables in that database. 

DESCRIBE table_name; or DESC 
table_name; 

Provides the structure of a specific table, 
including column names, data types, and whether 
they can be NULL. 

SELECT * FROM table_name; Retrieves all data from a table. 

SELECT column1, column2 FROM 
table_name; 

Retrieves specific columns from a table. 

SELECT * FROM table_name WHERE 
condition; 

Selects data from a table that meets certain 
conditions. 

INSERT INTO table_name (column1, 
column2) VALUES (value1, value2); 

Inserts new data into a table. 

UPDATE table_name SET column1 = 
value1, column2 = value2 WHERE 
condition; 

Updates existing data in a table. 

DELETE FROM table_name WHERE 
condition; 

Deletes data from a table based on a condition. 

CREATE DATABASE database_name; Creates a new database. 

DROP DATABASE database_name; Deletes a database. 

CREATE TABLE table_name (column1 
datatype, column2 datatype, ...); 

Creates a new table in the database. 

DROP TABLE table_name; Deletes a table from the database. 

ALTER TABLE table_name ADD 
column_name datatype; 

Adds a new column to an existing table. 

ALTER TABLE table_name DROP 
COLUMN column_name; 

Deletes a column from a table. 

GRANT PRIVILEGES ON 
database.table TO 
'username'@'host'; 

Gives a user specific privileges on a database or 
table. 

REVOKE PRIVILEGES ON 
database.table FROM 
'username'@'host'; 

Removes specific privileges from a user on a 
database or table. 

EXIT; or QUIT; Exits the SQL command line interface. 

 
	  

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/


bhaskarjroy1605@gmail.com | https://bhaskar-jr.github.io | @2023 

Resources to follow 

Highly Recommended 

1. SQL Pocket Guide by Alice Zhao <Simply get a hardcopy and make it your go-to-book> 
2. “SQL for Data Analysis: Advanced Techniques for Transforming Data into Insights” by 

Cathy Tanimura | <Load all the databases chapter wise from github repository and 
read/practice queries along with the text. Chapters 1,2,8 very useful to get SQL 
overview. Definitely go through Page no. 297 on Understanding Order of SQL Clause 
Evaluation> 

3. “SQL for Data Scientists - A Beginner's Guide for Building Datasets for Analysis” by 
Renee M. P. Teate <Relevant from Data science POV, well written, a breeze to read, 
treatment is lucid> 

4. Learning SQL: Generate, Manipulate, and Retrieve Data, by Alan Beaulieu | <Get started 
with the Sakila Database on MySQL. Great section on MySQL> 

5. Data Analysis Using SQL and Excel by GS Linoff <Excellent coverage of Excel, SQL, 
statistics in tandem to tackle business problems> 

6. SQL Window Functions: The Key to Succeeding in Data Science Interviews | 
https://youtu.be/e-EL-6Vnkbg 

 
Optional 
 
7. Getting Started with SQL: A Hands-On Approach for Beginners by Thomas Nield 
8. Getting Started with SQL and Databases: Managing and Manipulating Data with SQL by Mark 

Simon 
9. CS50’s Introduction to Databases with SQL|https://cs50.harvard.edu/sql/2023/weeks/0/ 
10. “SQL Cookbook - Query Solutions and Techniques for All SQL Users” by Anthony Molinaro 

and Robert de Graaf  
11. “Cracking the SQL Interview for DATA SCIENTISTS” by Leon Wei <90 SQL interview 

questions and solutions, to learn or refresh SQL coding skills> 
12. “SQL Query Design Patterns and Best Practices - A practical guide to writing readable 

and maintainable SQL queries using its design patterns” by Steve Hughes Dennis Neer, 
Dr. Ram Babu Singh, Shabbir H. Mala, Leslie Andrews, Chi Zhang  

13. “REAL SQL QUERIES 50 CHALLENGES” by BRIAN COHEN NEIL PEPI NEERJA MISHRA  
14. “The SQL Workshop - A New, Interactive Approach to Learning SQL” by Frank Solomon 

Prashanth Jayaram Awni Al Saqqa 
15. Introduction to Database & SQL | One Shot SQL - https://youtu.be/ccgQqpbdN70 
16. Practical SQL by Anthony DeBarros 
17. SQL: Advanced SQL Query Optimization techniques by Andy Vickler 
18. SQL:  Build complex SQL Queries by Andy Vickler 
19. “Learning MySQL - Get a Handle on Your Data” by Vinicius M. Grippa and Sergey Kuzmichev 

<comprehensive overview on how to set up and design an effective database with MySQL> 

Practice 

20. https://www.hackerrank.com/domains/sql 
21. https://www.hackerrank.com/challenges/challenges/problem 
22. https://leetcode.com/problemset/ 
23. Grokking the SQL Interview by Javin Paul <Recommended> 
24. Data Carpentry SQL for Ecology | http://lgatto.github.io/sql-ecology/ 
25. SQL Notes for Professionals by Goalkicker.com 
26. MySQL Notes for Professionals by Goalkicker.com 

Software Downloads 
 
27. MySQL Workbench community ed.| https://dev.mysql.com/downloads/workbench/ 

mailto:bhaskarjroy1605@gmail.com
https://bhaskar-jr.github.io/
https://www.amazon.in/SQL-Data-Analysis-Techniques-Transforming/dp/9355420358/ref=sr_1_1?crid=1SF8MBZI74CY4&keywords=sql+for+data+analysis+by+cathy+tanimura&qid=1703589711&s=books&sprefix=sql+for+data+analysis+%2Cstripbooks%2C191&sr=1-1
https://github.com/cathytanimura/sql_book/tree/master
https://www.amazon.in/Alan-Beaulieu/e/B0045AA4KC?ref=sr_ntt_srch_lnk_3&qid=1703600760&sr=8-3
https://youtu.be/e-EL-6Vnkbg
https://www.amazon.in/Thomas-Nield/e/B09Y2L52C9/ref=dp_byline_cont_book_1
https://www.amazon.in/Getting-Started-SQL-Databases-Manipulating/dp/1484294920/ref=sr_1_8?crid=K27RPIW8UVXR&keywords=getting+started+with+sql&qid=1703600672&sprefix=getting+started+with+sql%2Caps%2C209&sr=8-8
https://www.amazon.in/Mark-Simon/e/B0C7P87L3C?ref=sr_ntt_srch_lnk_8&qid=1703600672&sr=8-8
https://www.amazon.in/Mark-Simon/e/B0C7P87L3C?ref=sr_ntt_srch_lnk_8&qid=1703600672&sr=8-8
https://cs50.harvard.edu/sql/2023/weeks/0/
https://youtu.be/ccgQqpbdN70
https://www.hackerrank.com/domains/sql
https://www.hackerrank.com/challenges/challenges/problem
https://leetcode.com/problemset/
http://lgatto.github.io/sql-ecology/
https://dev.mysql.com/downloads/workbench/

	Table of Contents
	SQL Principles
	Proper use of Aliases
	Filtering data
	1. Using the WHERE Clause
	2. Using the FROM Clause (specifically in Joins with the ON Clause)
	3. Using the HAVING Clause
	Additional Points
	WHERE Versus HAVING – CAUTION AND TAKEAWAYS

	Filtering data – Concise Summary with Sample codes
	Recursive CTEs – Food for thought
	Solved Problems
	HackerRank Problem : Challenges | Medium Level
	HackerRank Problem : Contest Leaderboard | Medium Level

	MySQL from the Command Line interface
	Accessing MySQL from terminal in MacOS
	Commonly used MySQL commands in terminal

	Resources to follow

